研究成就與亮點(diǎn)
復(fù)旦大學(xué)梁佳研究團(tuán)隊(duì)在Nature Communications期刊發(fā)表題為“Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells”的研究論文,成功地以金屬硫?qū)倩?/strong> Sn(S0.92Se0.08)2 作為電子傳輸層(ETL),應(yīng)用于 n-i-p 型錫基鈣鈦礦太陽能電池,顯著提高了器件性能。與傳統(tǒng)氧化物 ETL 相比,Sn(S0.92Se0.08)2 ETL 能有效抑制錫基鈣鈦礦材料中Sn2+ 的氧化,并改善能級(jí)匹配,從而提高開路電壓(VOC)和功率轉(zhuǎn)換效率(PCE)。 研究成果包含:
將 n-i-p 型錫基鈣鈦礦太陽能電池的 VOC 從 0.48 V 提升至 0.73 V。
將 PCE 從 6.98% 提升至 11.78%,效率提升超過 65%。
器件穩(wěn)定性顯著提高,在 1632 小時(shí)后仍能保持 95% 以上的初始效率。
研究團(tuán)隊(duì)
本研究由復(fù)旦大學(xué)梁佳研究員為論文通訊作者,復(fù)旦大學(xué)Li Tianpeng、東華大學(xué)Li Bin為論文共同第一作者,復(fù)旦大學(xué)詹義強(qiáng)老師與之共同完成。
研究背景
錫基鈣鈦礦太陽能電池因其生物兼容性、窄帶隙和長(zhǎng)熱載流子壽命而受到關(guān)注。然而,nip 型錫基鈣鈦礦太陽能電池表現(xiàn)不佳,主要是由于不加選擇地使用最初為 nip 型鉛基鈣鈦礦太陽能電池設(shè)計(jì)的金屬氧化物電子傳輸層。
在這里,研究團(tuán)隊(duì)揭示了這種表現(xiàn)不佳是由金屬氧化物中的氧空位和更深的能級(jí)引起的。為了解決這些問題,研究團(tuán)隊(duì)提出了一種金屬硫系電子傳遞層,特別是 Sn(S0.92Se0.08)2,它繞過了氧分子的解吸并阻礙了 Sn2+ 氧化。
因此,具有 Sn(S0.92Se0.08)2 的錫基鈣鈦礦太陽能電池的 VOC 從 0.48 – 0.73 V 提高,功率轉(zhuǎn)換效率從 6.98 – 11.78% 提高。
此外,這些細(xì)胞表現(xiàn)出更高的穩(wěn)定性,在1632小時(shí)后仍保持超過95%的初始效率。研究結(jié)果表明,金屬硫?qū)倩锸俏磥?/span> nip 型錫基鈣鈦礦太陽能電池應(yīng)用的有希望的候選者。
解決方案
本研究闡明了 n-i-p 型 TPSCs 光伏性能不佳的根源,以及金屬氧化物 ETL 影響其性能的潛在機(jī)制。具體而言,研究證明了 TiO2 中氧空位的氧分子解吸會(huì)觸發(fā)錫基鈣鈦礦中 Sn2+ 到 Sn4+ 的氧化過程。
此外,TiO2 ETL 的深能級(jí)導(dǎo)致 VOC 降低。為了解決這些挑戰(zhàn),本研究將金屬混合硫?qū)倩?/span> Sn(S0.92Se0.08)2 作為 ETL 引入 n-i-p 型 TPSC。與傳統(tǒng)的金屬氧化物 ETL 不同,
Sn(S0.92Se0.08)2 ETL 不僅避免了 O2 分子的解吸,而且還阻止了錫基鈣鈦礦中的 Sn2+ 離子與空氣中的 O2 分子之間的反應(yīng)。
此外,與金屬氧化物相比,Sn(S0.92Se0.08)2 ETL 具有更淺的導(dǎo)帶最小值(CBM)位置。此外,它還具備其他一些優(yōu)點(diǎn),包括改進(jìn)的形貌、更高的電導(dǎo)率和更高的電子遷移率。這些特性使采用 Sn(S0.92Se0.08)2 ETL 的 n-i-p 型 TPSC 的 VOC 從 0.48 V 顯著提高到 0.73 V,PCE 從 6.98% 提高到 11.78%,提高了 65% 以上。
此外,Sn(S0.92Se0.08)2 ETL 還顯著提高了 n-i-p 型 TPSC 的運(yùn)行穩(wěn)定性。
實(shí)驗(yàn)過程與步驟
為探討金屬氧化物 ETL 對(duì) n-i-p 型 TPSCs 的影響,本研究重點(diǎn)研究了廣泛使用的 FTO/TiO2/錫基鈣鈦礦/PTAA/Ag 結(jié)構(gòu)。
TiO2 ETL 使用丁醇鈦溶液沉積在 FTO 基板上,隨后在 450°C 下退火。然后,使用一步沉積法將錫基鈣鈦礦 PEA0.15FA0.85SnI2.85Br0.15 沉積在 TiO2 ETL 上。
本研究通過水熱法合成了金屬混合硫?qū)倩?/span> Sn(SxSey)2,作為 n-i-p 型 TPSCs 中 ETL 的有希望的候選材料。詳細(xì)的合成步驟見方法部分。
研究表征
J-V 特性曲線: 本研究透過光焱科技SS-X 標(biāo)準(zhǔn)光譜太陽光模擬器,在 AM 1.5 G 光照下,光強(qiáng)為 100 mW/cm2(1 個(gè)太陽光強(qiáng))的條件下進(jìn)行 J-V 特性曲線測(cè)試。采用正向/反向掃描模式(掃描速率為 0.01 V/s)。在測(cè)試之前,使用標(biāo)準(zhǔn) Si 參考電池(ENLITECH SRC-2020-KG1-RTD)校準(zhǔn)光強(qiáng)?;钚悦娣e為 0.04-1 cm2。
圖 4b 顯示了采用 TiO2、SnS2 和 Sn(S0.92Se0.08)2 薄膜作為 ETL 的最佳性能 n-i-p 型 TPSCs 的電流密度-電壓(J-V)曲線。
相應(yīng)的光伏參數(shù)列于補(bǔ)充表 5 中。采用 TiO2 ETL 的 n-i-p 型 TPSC 的 PCE 為 6.98%,Voc 為 0.48 V,短路電流密度(JSC)為 20.47 mA/cm2,填充因子(FF)為 71.11%,與之前的報(bào)導(dǎo)相當(dāng)。
正如預(yù)期的那樣,使用金屬硫?qū)倩镒鳛?/span> ETL 后,n-i-p 型 TPSCs 的所有光伏參數(shù)都顯著提高。具體而言,采用 SnS2 ETL 的 n-i-p 型 TPSC 的 PCE 為 9.03%,Voc = 0.57 V,JSC = 21.89 mA/cm2,FF = 72.88%,而采用 Sn(S0.92Se0.08)2 ETL 的 n-i-p 型 TPSC 的 PCE 為 11.78%,Voc = 0.73 V,JSC = 22.28 mA/cm2,FF = 72.68%。
當(dāng)通常使用的 TiO2 ETL 被 Sn(S0.92Se0.08)2 ETL 替換后,n-i-p 型 TPSCs 的 PCE 提高了 65% 以上。研究團(tuán)隊(duì)從上海微系統(tǒng)與信息技術(shù)研究所獲得了 n-i-p 型 TPSC 的認(rèn)證 PCE,為 10.57%(補(bǔ)充圖 17)。
如圖 4b、c 所示,這一顯著的提高主要?dú)w因于 Voc 的提高,這是 Sn(S0.92Se0.08)2 ETL 中淺 CBM 位置的結(jié)果(補(bǔ)充表 2)。此外,Sn(S0.92Se0.08)2 ETL 還有助于在錫基鈣鈦礦薄膜中生長(zhǎng)高度結(jié)晶、垂直取向和貫穿晶粒的結(jié)構(gòu),如補(bǔ)充圖 18-19 所示,這導(dǎo)致相應(yīng)的 n-i-p 型 TPSC 的 JSC 更高。
補(bǔ)充表 1:表格中列出了代表性 nip 型 TPSC 的光伏性能數(shù)據(jù),包括使用不同金屬氧化物 ETL (TiO2 和 SnO2) 的器件的 Voc。大部分使用金屬氧化物 ETL 的 nip 型 TPSC 的 Voc 都 < 0.5 V,遠(yuǎn)低于理論預(yù)期值。這表明金屬氧化物 ETL 可能是導(dǎo)致 nip 型 TPSC Voc 損耗的主要原因。
補(bǔ)充圖1:此圖重點(diǎn)突出了 nip 型 TPSC 的實(shí)驗(yàn) PCE 和 Voc 與理論值之間的顯著差異。
ENLITECH SS-X100R 作為太陽能模擬器,提供標(biāo)準(zhǔn)的 AM 1.5 G 光照條件 (100 mW/cm2) 進(jìn)行 J-V 曲線測(cè)試, 確保測(cè)量結(jié)果的準(zhǔn)確性和可比性。
入射光子-電子轉(zhuǎn)換效率(IPCE): 使用 Enlitech 的 QE-R 系統(tǒng)進(jìn)行 IPCE 測(cè)量。
圖 4c 進(jìn)一步表明,采用 Sn(S0.92Se0.08)2 薄膜的 n-i-p 型 TPSC 的 PCE 令人印象深刻,它顯著超過了之前報(bào)導(dǎo)的采用 TiO2 薄膜的 n-i-p 型 TPSCs 的 PCE。盡管取得了這一重大進(jìn)展,但未來仍有必要通過多種策略進(jìn)一步提高 n-i-p 型 TPSCs 的光伏性能。
例如,在 Sn(S0.92Se0.08)2 ETL 中引入添加劑可以進(jìn)一步提高其 CBM。此外,在 Sn(S0.92Se0.08)2 ETL 表面應(yīng)用超薄層可能有助于抑制復(fù)合,并改善錫基鈣鈦礦層的形貌。這些方法對(duì)于進(jìn)一步優(yōu)化 n-i-p 型 TPSCs 的性能至關(guān)重要。
圖 4d 展示了采用 TiO2、SnS2 和 Sn(S0.92Se0.08)2 ETL 的 n-i-p 型 TPSCs 的 IPCE 光譜和積分 JS。JSC 的誤差幅度約為 5%,與之前的文獻(xiàn)一致。這種微小的差異可歸因于測(cè)量條件(如太陽光模擬器和 IPCE 設(shè)置)的差異、IPCE 測(cè)量樣品的預(yù)處理以及離子遷移動(dòng)力學(xué)的變化。為驗(yàn)證可重復(fù)性,分別制備了 24 個(gè)采用 TiO2、SnS2 和 Sn(SxSey)2 ETL 的 n-i-p 型 TPSCs,如補(bǔ)充圖 23 所示。這一結(jié)果表明,采用金屬硫?qū)倩?/span> ETL 的 n-i-p 型 TPSCs 的 PCE 分布范圍比采用 TiO2 ETL 的 n-i-p 型 TPSCs 更窄,表明前者具有更高的可重復(fù)性。
ENLITECH QE-R 系統(tǒng)在文獻(xiàn)中被用于進(jìn)行 IPCE 測(cè)量,以評(píng)估不同 ETL 對(duì) nip 型 TPSC 光電轉(zhuǎn)換效率的影響,并產(chǎn)生了圖 4d 中的 IPCE 光譜和積分 Jsc 值。
其他表征技術(shù)
電子順磁共振(EPR):用于直接證明 TiO2 薄膜中氧空位(OVs)的存在。圖 1b 顯示了 TiO2 薄膜的 EPR 光譜,其中在 g = 2.004 處記錄到一個(gè)強(qiáng)烈的未成對(duì)電子信號(hào),表明 TiO2 薄膜中存在 OVs。
X 射線光電子能譜(XPS): 用于分析 TiO2 和 Sn 基鈣鈦礦薄膜中 Ti、O 和 Sn 元素的化學(xué)價(jià)態(tài)。
紫外光電子能譜(UPS): 用于研究 TiO2、SnS2 和 Sn(S0.92Se0.08)2 薄膜的價(jià)帶最大值(VBM)和導(dǎo)帶最小值(CBM)能級(jí)。
透射電子顯微鏡(TEM): 用于驗(yàn)證典型的金屬混合硫?qū)倩?/span> Sn(S0.92Se0.08)2 的組成分布和結(jié)晶度。
X 射線衍射(XRD): 用于驗(yàn)證典型的金屬混合硫?qū)倩?/span> Sn(S0.92Se0.08)2 的組成分布和結(jié)晶度。
開爾文探針力顯微鏡(KPFM): 用于提供可靠的局部表面電位,以進(jìn)一步驗(yàn)證 Sn(S0.92Se0.08)2 ETL 的良好能帶匹配。
紫外-可見光(UV-vis)光譜: 用于研究 TiO2、SnS2 和 Sn(S0.92Se0.08)2 ETL 的光學(xué)透明度。
掃描電子顯微鏡(SEM): 用于觀察 TiO2、SnS2 和 Sn(S0.92Se0.08)2 ETL 的頂視形貌。
原子力顯微鏡(AFM): 用于進(jìn)一步證實(shí) TiO2、SnS2 和 Sn(S0.92Se0.08)2 薄膜的形貌特征。
空間電荷限制電流(SCLC): 用于定量評(píng)估電子遷移率。在具有 FTO/Ag/ETL/Ag 結(jié)構(gòu)的器件上進(jìn)行了 SCLC 測(cè)量。
第一性原理計(jì)算: 用于理解 Sn(S0.92Se0.08)2 ETL 與錫基鈣鈦礦之間的相互作用。如上所述,在外部刺激下,氧(O2)分子從 TiO2 ETL 中的 OV 位點(diǎn)解吸。
掠入射廣角 X 射線散射(GIWAXS): 用于通過實(shí)驗(yàn)證明 Sn(S0.92Se0.08)2 ETL 與錫基鈣鈦礦之間的強(qiáng)相互作用。為了在沒有任何轉(zhuǎn)移和損壞的情況下收集埋藏界面信息,X 射線束從沉積在 PEN/ITO/ETL 基板上的錫基鈣鈦礦薄膜的背面照射,其中 ETL 分別為 TiO2、SnS2 和 Sn(S0.92Se0.08)2 薄膜。
光致發(fā)光(PL): 用于研究 Sn(S0.92Se0.08)2 ETL 與錫基鈣鈦礦層之間的相互作用。
圖 3h 展示了沉積在 TiO2、SnS2 和 Sn(S0.92Se0.08)2 ETL 上的錫基鈣鈦礦薄膜的光致發(fā)光 (PL) 光譜。沉積在 SnS2 和 Sn(S0.92Se0.08)2 薄膜上的錫基鈣鈦礦,其 PL 光譜強(qiáng)度低于沉積在 TiO2 薄膜上的錫基鈣鈦礦。這個(gè)結(jié)果表明,從錫基鈣鈦礦薄膜到金屬硫?qū)倩衔锏碾娮愚D(zhuǎn)移效率更高。此外,沉積在 Sn(S0.92Se0.08)2 薄膜上的錫基鈣鈦礦薄膜在三種樣品中呈現(xiàn)的 PL 光譜強(qiáng)度,與 Sn(S0.92Se0.08)2 薄膜與錫基鈣鈦礦之間具有交互作用的結(jié)果一致。
推薦使用光焱科技 LQ-100X光致發(fā)光與發(fā)光量子光學(xué)檢測(cè)儀,一臺(tái)設(shè)備具備四種功能。
時(shí)間分辨 PL(TRPL): 用于進(jìn)一步了解有效的電子轉(zhuǎn)移動(dòng)力學(xué)。還進(jìn)行了 TRPL 測(cè)量,以測(cè)試三個(gè)樣品的衰減壽命。通過對(duì) TRPL 衰減進(jìn)行單指數(shù)擬合,計(jì)算了相應(yīng)的 TRPL 壽命。顯然,沉積在 Sn(S0.92Se0.08)2 薄膜上的錫基鈣鈦礦薄膜在三個(gè)樣品中顯示出最短的 PL 衰減壽命。如此短的壽命進(jìn)一步表明,在沉積在 Sn(S0.92Se0.08)2 薄膜上的錫基鈣鈦礦薄膜結(jié)構(gòu)中,電子轉(zhuǎn)移最快。
電化學(xué)阻抗譜(EIS): 用于探測(cè)采用 TiO2、SnS2 和 Sn(S0.92Se0.08)2 ETL 的 n-i-p 型 TPSCs 的界面特性。
研究成果
本研究揭示了金屬氧化物 ETL 對(duì) n-i-p 型 TPSCs 性能造成不利影響的根本原因和潛在機(jī)制。這主要是由于兩個(gè)因素:氧空位的氧分子解吸,將錫基鈣鈦礦中的 Sn2+ 氧化為 Sn4+,以及 TiO2 ETL 的能級(jí)不匹配,降低了 VOC。
為了應(yīng)對(duì)這些問題,本研究將金屬混合硫?qū)倩?/span> Sn(S0.92Se金屬硫?qū)倩镫娮犹崛訛?/span>nip型錫基鈣鈦礦太陽能電池的應(yīng)用帶來了新的希望。
錫基鈣鈦礦太陽能電池具有良好的窄帶隙和較長(zhǎng)的熱載流子壽命。
然而,nip型錫基鈣鈦礦太陽能電池的性能一直不佳,主要原因是使用了最初為nip型鉛基鈣鈦礦太陽能電池設(shè)計(jì)的金屬氧化物電子傳輸層。
本研究揭示了這種性能不佳的原因是金屬氧化物中的氧空位和更深的能級(jí)。
為了解決這些問題,研究提出了一種金屬硫?qū)倩镫娮觽鬏攲樱貏e是 Sn(S0.92Se0.08)2,它可以避免氧分子解吸并阻止 Sn2+ 的氧化。
結(jié)果表明,采用 Sn(S0.92Se0.08)2 的錫基鈣鈦礦太陽能電池的 VOC 從 0.48 V 增加到 0.73 V,功率轉(zhuǎn)換效率從 6.98% 提升到 11.78%。
此外,這些電池還表現(xiàn)出更高的穩(wěn)定性,在 1632 小時(shí)后仍能保持超過 95% 的初始效率。這些研究結(jié)果表明,金屬硫?qū)倩锸俏磥韓ip型錫基鈣鈦礦太陽能電池應(yīng)用的有希望的候選材料。
文獻(xiàn)參考自Nature Communications_DOI: 10.1038/s41467-024-53713-4
本文章為Enlitech光焱科技改寫 用于科研學(xué)術(shù)分享 如有任何侵權(quán) 請(qǐng)來信告知